...will convert a split archive to a single-file archive. Copy mode will convert stream entries (using data descriptors and which should be compatible with most unzips) to normal entries (which should be compatible with all unzips), except if standard encryption was used. For archives with encrypted entries, zipcloak will decrypt the entries and convert them to normal entries.
Since macOS is based on Unix there are a number of ways to compress files and folders within the filing system using Unix based application code, below are a few options using the Terminal or command line interface (cli). The default command line application interface in macOS is the Terminal and is stored in /Applications/Utilities.
unix how to zip a file
File and folder compression saves on file size and ensures the contents are captured and delivered or stored as one monolithic file. A compressed file which contains files and folders is generally referred to as an archive. Here are some built-in compression applications you can use including zip, tar, gz, bz2, gz and dmg.
ZIP is an archive file format that supports lossless data compression. A ZIP file may contain one or more files or directories that may have been compressed. The ZIP file format permits a number of compression algorithms, though DEFLATE is the most common. This format was originally created in 1989 and was first implemented in PKWARE, Inc.'s PKZIP utility,[2] as a replacement for the previous ARC compression format by Thom Henderson. The ZIP format was then quickly supported by many software utilities other than PKZIP. Microsoft has included built-in ZIP support (under the name "compressed folders") in versions of Microsoft Windows since 1998 via the "Plus! 98" addon for Windows 98. Native support was added as of the year 2000 in Windows ME. Apple has included built-in ZIP support in Mac OS X 10.3 (via BOMArchiveHelper, now Archive Utility) and later. Most free operating systems have built in support for ZIP in similar manners to Windows and Mac OS X.
ZIP files generally use the file extensions .mw-parser-output .monospacedfont-family:monospace,monospace.zip or .ZIP and the MIME media type application/zip.[1] ZIP is used as a base file format by many programs, usually under a different name. When navigating a file system via a user interface, graphical icons representing ZIP files often appear as a document or other object prominently featuring a zipper.
The .ZIP file format was designed by Phil Katz of PKWARE and Gary Conway of Infinity Design Concepts. The format was created after Systems Enhancement Associates (SEA) filed a lawsuit against PKWARE claiming that the latter's archiving products, named PKARC, were derivatives of SEA's ARC archiving system.[3] The name "zip" (meaning "move at high speed") was suggested by Katz's friend, Robert Mahoney.[4] They wanted to imply that their product would be faster than ARC and other compression formats of the time.[4] The earliest known version of .ZIP File Format Specification was first published as part of PKZIP 0.9 package under the file APPNOTE.TXT in 1989.[citation needed] By distributing the zip file format within APPNOTE.TXT, compatibility with the zip file format proliferated widely on the public Internet during the 1990s.[5]
The .ZIP file format specification is formally named "APPNOTE - .ZIP File Format Specification" and it is published on the PKWARE.com website since the late 1990s.[11] Several versions of the specification were not published. Specifications of some features such as BZIP2 compression, strong encryption specification and others were published by PKWARE a few years after their creation. The URL of the online specification was changed several times on the PKWARE website.
WinZip, starting with version 12.1, uses the extension .zipx for ZIP files that use compression methods newer than DEFLATE; specifically, methods BZip, LZMA, PPMd, Jpeg and Wavpack. The last 2 are applied to appropriate file types when "Best method" compression is selected.[28][29]
.ZIP files are archives that store multiple files. ZIP allows contained files to be compressed using many different methods, as well as simply storing a file without compressing it. Each file is stored separately, allowing different files in the same archive to be compressed using different methods. Because the files in a ZIP archive are compressed individually, it is possible to extract them, or add new ones, without applying compression or decompression to the entire archive. This contrasts with the format of compressed tar files, for which such random-access processing is not easily possible.
A directory is placed at the end of a ZIP file. This identifies what files are in the ZIP and identifies where in the ZIP that file is located. This allows ZIP readers to load the list of files without reading the entire ZIP archive. ZIP archives can also include extra data that is not related to the ZIP archive. This allows for a ZIP archive to be made into a self-extracting archive (application that decompresses its contained data), by prepending the program code to a ZIP archive and marking the file as executable. Storing the catalog at the end also makes possible hiding a zipped file by appending it to an innocuous file, such as a GIF image file.
A ZIP file is correctly identified by the presence of an end of central directory record which is located at the end of the archive structure in order to allow the easy appending of new files. If the end of central directory record indicates a non-empty archive, the name of each file or directory within the archive should be specified in a central directory entry, along with other metadata about the entry, and an offset into the ZIP file, pointing to the actual entry data. This allows a file listing of the archive to be performed relatively quickly, as the entire archive does not have to be read to see the list of files. The entries within the ZIP file also include this information, for redundancy, in a local file header. Because ZIP files may be appended to, only files specified in the central directory at the end of the file are valid. Scanning a ZIP file for local file headers is invalid (except in the case of corrupted archives), as the central directory may declare that some files have been deleted and other files have been updated.
For example, we may start with a ZIP file that contains files A, B and C. File B is then deleted and C updated. This may be achieved by just appending a new file C to the end of the original ZIP file and adding a new central directory that only lists file A and the new file C. When ZIP was first designed, transferring files by floppy disk was common, yet writing to disks was very time-consuming. If you had a large zip file, possibly spanning multiple disks, and only needed to update a few files, rather than reading and re-writing all the files, it would be substantially faster to just read the old central directory, append the new files then append an updated central directory.
Each entry stored in a ZIP archive is introduced by a local file header with information about the file such as the comment, file size and file name, followed by optional "extra" data fields, and then the possibly compressed, possibly encrypted file data. The "Extra" data fields are the key to the extensibility of the ZIP format. "Extra" fields are exploited to support the ZIP64 format, WinZip-compatible AES encryption, file attributes, and higher-resolution NTFS or Unix file timestamps. Other extensions are possible via the "Extra" field. ZIP tools are required by the specification to ignore Extra fields they do not recognize.
The ZIP format uses specific 4-byte "signatures" to denote the various structures in the file. Each file entry is marked by a specific signature. The end of central directory record is indicated with its specific signature, and each entry in the central directory starts with the 4-byte central file header signature.
There is no BOF or EOF marker in the ZIP specification. Conventionally the first thing in a ZIP file is a ZIP entry, which can be identified easily by its local file header signature. However, this is not necessarily the case, as this not required by the ZIP specification - most notably, a self-extracting archive will begin with an executable file header.
Tools that correctly read ZIP archives must scan for the end of central directory record signature, and then, as appropriate, the other, indicated, central directory records. They must not scan for entries from the top of the ZIP file, because (as previously mentioned in this section) only the central directory specifies where a file chunk starts and that it has not been deleted. Scanning could lead to false positives, as the format does not forbid other data to be between chunks, nor file data streams from containing such signatures. However, tools that attempt to recover data from damaged ZIP archives will most likely scan the archive for local file header signatures; this is made more difficult by the fact that the compressed size of a file chunk may be stored after the file chunk, making sequential processing difficult.
Most of the signatures end with the short integer 0x4b50, which is stored in little-endian ordering. Viewed as an ASCII string this reads "PK", the initials of the inventor Phil Katz. Thus, when a ZIP file is viewed in a text editor the first two bytes of the file are usually "PK". (DOS, OS/2 and Windows self-extracting ZIPs have an EXE before the ZIP so start with "MZ"; self-extracting ZIPs for other operating systems may similarly be preceded by executable code for extracting the archive's content on that platform.)
The .ZIP specification also supports spreading archives across multiple file-system files. Originally intended for storage of large ZIP files across multiple floppy disks, this feature is now used for sending ZIP archives in parts over email, or over other transports or removable media. 2ff7e9595c
Comments